Chiral matrix model for QCD

“Semi1” QGP: in QCD, near the chiral phase transition, T: 130 -> 300 MeV
1. Chiral matrix model

2. Suppression of color

3. Dilepton production: unsuppressed

4. Photon production: strongly suppressed

5. Shear viscosity: strongly suppressed



The Quark-Gluon Plasma near T.

T=0to T~ 130 MeV: hadronic resonance model, i perturbation theory....

T> 300 MeV: resum perturbation theory

Hard Thermal Loop perturbation theory at three loop order
Haque, Bandyopadhyay, Andersen, Mustafa, Mike Strickland, Nan Su, 1402.6907

But: in heavy 1on collisions, most time 1s spent near T.

1

Assume Bjorken hydrodynamics: in the central plateau, 7T~ —— 73
-

Tr= 160 MeV. RHIC, Ti =400 MeV. LHC, T; = 600 MeV.

3
In Bjorken hydro, as T; — oo, (T) — 51y = 215 @ RHIC; =227 @ LHC



Chiral matrix model for QCD



Chiral symmetry

For 3 flavors of massless quarks coupled to a gauge field,

_ _ _ 1 =5
L% =GDq=0,Pq. +TzPqr , qLr= .

Classically, global flavor symmetry of SU(3)L x SU3)r x U(1)a,

—ia/2 +ia/2

Urqr

qr, — € UrLqr , qr —e

Simplest order parameter for y symmetry breaking (ySB’g):  gab _ q gA 7
a,b... =flavor. A.B... =color R

O — et Up ®US

Quantum mechanically, axial U(1)a 1s broken by instantons +.... to Z(3)a at T=0
't Hooft instant tex 1S 1 1ant under Z(3)a: :
ooft instanton vertex 1S invariant under Z(3)a dot & —s 630 det &

As T — oo, U(1)a approximately restored as 1/T7 2,



Effective Lagrangians for chiral symmetry

Standard linear sigma model for @:
Vo = m? tr (&7®) — ca (det @ + c.c.) + Atr (0TD)°

Drop (tr ®*+d)2. Mass, quartic terms U(1)a invariant, det ® under Z(3)a .
For light but massive quarks, need to add

VY =—tr(H (@7 + @))

(1P

Quarks generate potential in “q”, so must couple ® to quarks: PLr = (1 = s5)/2

LY =T(P +py"+ y(@PL+ P Pr)) g

Use non-perturbative potential from pure glue theory, with same Tq = 270.
But with quarks, Tq is just a parameter in a potential, not deconfining T.

Similar to Kovacs, Szep, Wolf, 1601.05291; they add vector mesons.



New logarithmic terms

Assume YSB’g occurs, (D) = p,som =y O.

3m* (1 M?
. . . + log
At T =0, u.v. divergent terms in 4 - € dim.s: 1672 m2
M = renormalization mass scale

Need to add new logarithmic term in P:

M?
lo
Vs© = Ktr [(CDTCD) log (@TQD)]

To 1 loop order, # = 3y4/(16 72); we keep it as a free parameter.

In practice, log term complicates the computation, but does not signficantly
alter the conclusions from » = 0.



New symmetry breaking term

With just usual symmetry breaking term,

t high T, 1
aLie Veffz—h¢+1—2y2T2¢2—|—...,T—>oo
The first is SB’g, the second from fermion fluctuations.
But then there is no symmetry breaking at high T, 124 1
YT e Y

Solve by adding a new temperature dependent term by hand

|
Vel ~ _ hp— %mo T°6+ =y’ T° 6" + ...

So ¢ ~ mo/y at high T, mgx ~ mo. In QCD, need to be bit more clever,

1
V}? = — —m‘;k ( tr




Solutionat T =0

Consider first the SU(3) symmetric case, hy = hq = hs.
Spectrum. O-: singlet 1” & octet 7. 0*: singlet 0 and octet ao.

Satisfy a ’t Hooft relation:

2
My — My 0 p

The anomaly moves 1)’ up from the 5T, but also moves 0 down from the a!
QCD: (D) = (2, 24, 25). From:
fr =93, m, =140, mg =495, m, =540, m,y = 960
Determine:
Nu =46, X, =76, h, = (97)°, hs = (305)° , c4 = 4560
m? = (538)* —121y* ; A =18+ 0.04y*

€e_.%

Leaves one free parameter, Yukawa coupling “y”. Determine from Ty.



Solution at T #0

To eliminate u.v. divergences, _ _
(99)u,r — (Mmu/ms)(qq)s T

lattice uses substracted condensates Alattice(py — 12 -
’ <C]C]>u,0 _ (mu/ms><qCI>s,O

In our model we use analogous quantity - (T) = Yu(T) = (hy/hs)Xs(T)
to fix y =35. o° u(0) = (hu/hs)Xs(0)

1Ok
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Varying the Yukawa coupling

200 . . . . T, defined from maximum in
light quark suscep., d2.,/dT
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Meson masses vs T

Usual pattern for my = mg # ms. 'y = 3.
U(1)a breaking persists to high T, unphysical.
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Pressure, interaction measure vs T

Pressure and 5
interaction measure, (e-3p)/T%,
versus Lattice, Bazavov et al, 1407.6387
and Hard Thermal Loop (HTL)

(blue region = change ren. scale) .
Andersen et al, 1511.04660 =

(e-3p)/T*!
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Order parameters, chiral and deconfining

LOF ===, = iasmrmrmrmemeemrens . . .
\ < Polyakov loop, Chiral matrix model:
0.8F . £
o model Chiral and deconfining order parameters
0.6} . = >(T)/=s(0) are strongly correlated
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Susceptibilities, chiral and deconfining
Largest peak for up-up; strange-strange small.
In QCD, notable peaks for loop-up & loop-loop, strongly correlated with up-up

In chiral limit: loop-up suscep. diverges. Sasaki, Friman, Redlich ph/0611147
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Baryon susceptibilities: 2nd & 4th

P Lo
As evaluated at p =0, lattice ok. x2(T) =171 — p(T', up)
Baryon ug = 3 Lg. oM we=0
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6th order baryon susceptibility

In our model, 6 shows non-monotonic behavior near Ty.
In HTL, 6 1s very small (because m=0)
o model: including change in 2, but not in loop. Change in ¢ much smaller.
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Ratios of moments, vs lattice

Xi/xs
- === X{/x5, ea(T) |
X6 /X3
- === X6/x3, ea(T)

Left: ratio of x4/%2 and %6/y2 in model

Bazavov et al, 1701.04325
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What’s up with the lattice lo

Looked at wide variety of possible models.

Below: y2 from chiral matrix model, lattice,
and fitting the loop to the lattice value, then computing 2.

If the lattice loop is right, then y2 is too small.
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Suppression of color in the semi-QGP



Suppressing color in the semi-QGP

Statistical distribution functions those for imaginary chemical potential:

~ 1 1
na(E) = e(E—iQ*)/T 1 1 nap(F) = e(E—i(QY—Q%))/T _ {
For three colors, color chemical potential: 9T

Qa — T Q(T) (17 _170)

When Q ~ T, the only soft gluons have Q2 = Qb: diagonal elements.
For N colors: ~ N2 off-diagonal gluons, and ~ N diagonal gluons

In the semi-QGP, soft gluons are suppressed by 1/N.



Suppression of color near T

Consider energetic particles, E ) T, Boltzmann statistics

Mg (E) ~ e (F71QU/T Nap(E) ~ e~ (B=iQ"=Q")/T
While the n(E)’s are complex, sums over color are real. 1 N
Polyakov loop: _ QY /T
olyakov loop E—szle
a—=

Summing over color,

N
1 ~ _ 1 ~ —E/T ;2
—E ne(E)=e F/Ty — oy (E) = e E/T
Nazl N

Near T, where loop small, quarks suppressed by loop; gluons by loop squared.



Dileptons: unsuppressed



Hard dileptons: same!

Dileptons: off shell photon goes to quark anti-quark pair. - Q.
Consider dileptons back to back, total momentum = 0.

Diagrams same, only the distribution functions change.

1 1

B = S B S e

(Imaginary) chemical potential: sign of Q2 flips between q and q bar.
Large E: with Boltzmann statistics,

Zﬁa(E)ﬁ_a(E) ~ o~ (E—iQ")/T ,—(E+iQ"*)/T _ ,—2B/T

So Q¥’s drop out: # dileptons identical in deconfined and confined phases!



Soft Dileptons: more in confined phase

High T: Q2=0. As E — 0, # dileptons: ﬁ(o)g N 1
Fermi-Dirac dist. fnc. finite at E = 0. 4
In the confined phase, Polyakov loop = 0, find amazing identity:

T

1 e
~ 2_:1 a(E) i—a(B) ~ n(E) =p0 —

More dileptons in the confined phase!
Confined phase only in the pure gauge theory, but interesting point of principle.

“Statistical confinement”: quark anti-quark forms “boson”,
which exhibits Bose-Einstein enhancement. But no dynamics of confinement.

N.B.: in dynamical quasi-particle model, as T — T. quarks heavier,
but width increases, so also obtain enhanced dilepton rate.



Dileptons

Explicitly, we computed the diagram:
Here, propagators with hatched dot are

just po — po - 1 Q2. Very straightforward S "M\

Js7 = # dileptons (g—ig>

2T 1+4+3Le P /T 430 2-/T 4 =30 /T

Ja=1- 3p 08 3l epe/T + 30c—20/T 4 =301 /T

When Q =0, # dileptons ~ dem. Photon momentum = (E,p), E-= (E £ p)/2.
Polyakov loop = /: =1 in the perturbative QGP, and = 0 in the confined phase.

Above factor analogous to PNJL. model,
Abishek Atreya, Sarkar, Srivastava, 1111.3027, 1404.5697, & Das, 1406.7411



Ratio # dileptons, vs T

Below ratio of # dileptons, vs T. Ratio semi-QGP/perturbative QGP.
Take QCD coupling same, so only function of Q?’s, taken from the lattice.
Mild enhancement of dileptons at small E.

Lee, Wirstam, Zahed, Hansson, ph/9809440:
Condensate in ~ (A¢?) ; equivalent to expanding to ~ {Q?3).
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Experiment: dilepton excess below the @

CERES/NA45, Vs = 8.8 GeV/A.
Below the o, QGP small, dominated by hadronic cocktail.
Need medium broadened o to fit data: so need to fit semi-QGP to hadronic phase
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Where does the ¢ go?

As T—T, ,x symmetry = Q and a; spectral densities degenerate. But how?
Brown & Rho (PRL’91) g goes down. RDP, ph/9503328: o goes up.

Holt, Hohler, & Rapp, 1210.7210: ¢ and a; peaks don’t move, just broaden: ?
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Ayala, Dominguez, Loewe, Mizher, Zhang, 1210.2588, 1309.4135, 1405.2228:
find the 0 does move....down :(



Real photon production: strongly suppressed



Production of hard photons

Photon on the mass shell cannot go to quark anti-quark; must also emit a gluon
At leading order, two processes. Compton scattering:

TR

Pair annihilation:




Suppression in confined phase by 1/N?2

In double line notation: diagram suppressed by loop unless
colors of quark and anti-quark the same,a=-b :

b—<—<—Fb
o ¥

Co

But if a = - b, diagonal gluon, suppression of 1/N.
And, if a = -b, tracelessness of gluon implies extra factor of 1/N, or 1/N2 in all.

Similar suppression for Compton scattering.



Photon production: computation

Photon momentum “hard”, P = (E, p), E =p » T. Denote by red lines.
Internal lines can be soft, E or p ~ T; denote by blue lines.

Diagrams with one soft quark line:

Hatched blob: Q2 =0

Solid blob: HTL with Q4 % 0 1T
Exhibits logarithmic UV divergence, when

the soft quark line becomes hard.

Also two loops diagrams, in which all lines are hard.
All lines below should be hatched, with Q2 # 0.
Exhibits logarithmic IR divergence, when the gluon line becomes soft.

~Eru A



Strong suppression of real photons in the confined phase

Summing soft + hard, logarithms cancel. For hard photons, very simple result:

Q #0 0, _ Q
= hotons | =——— | =1—-49+ —q° ; g = ——
f+(Q) =#p (Q:O I+ 545 4= 5
f(Q
In the confined phgse, Jeonf = 1/3, 0.4—954f,7(Q) T o °
find huge suppression: f o
0.3 .
1 1 0 .
f’Y(QConf) — W — ﬁ ",'
0.1+
”/ T—
Suppression is so large that it persists 20 300 40 500

even to T ~ 500 MeV. /l\ 200 500 ll\



Landau-Pomeranchuk-Migdal

In the perturbative QGP, even at leading order in g2, LPM = need to resum an
infinite set of ladder diagrams: Arnold, Moore & Yaffe, ph/0111107, ph/0204343

N>V Na DY

Each new rung is down by g2, but for soft gluon, k ~ gT, compensated by
Bose-Einstein enhancement times energy denominator,

ipo — B + Ep_y, gl' gT

Semi-QGP: only soft gluons are diagonal, so LPM is suppressed by 1/N.
What we did: only 2 — 2 processes, at leading logarithmic order.
Did compute LPM correction, term is large for N = 3.



Hydrodynamics: # dileptons
MUSIC: 3+1 hydro @ RHIC: Vs = 200 GeV/A, central collisions

Preliminary analysis: only ideal hydro.

Small enhancement of dileptons in semi-QGP, swamped by hadronic phase.
No matching of semi-QGP to hadronic phase: clearly essential.
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Hydrodynamics: dilepton vz

Since # dileptons dominated by hadrons, effect on elliptic flow, vz, small.
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Hydrodynamics: # photons

In semi-QGP, far fewer photons above T..

1
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Hydrodynamics: photon elliptic flow, vz
Fewer photons near T¢ in semi-QGP has a big effect on the total v».

Tends to bias the total v; to that in hadronic phase. Small “dilution” by QGP.
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PHENIX vs theory: puzzle of the “missing” photons

Sources of photons: QGP, hadron gas, “primordial” = hard 1nitial processes

PHENIX: more photons than expected?
At RHIC: “primordial” photons appear to dominate above p.~ 2 GeV

van Hees, He, Rapp, 1404.2846
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ALICE vs theory: puzzle of the “missing” photons

At LHC, “primordial” appears to dominate above p; ~ 1 GeV
Again, experiment much larger than theory?

van Hees He Rapp, 1404.2846
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Hadronic contribution to photons?

Dusling & Zahed, 0911.2426

Do virial expansion, need (| Jy () v (0)|m) ; (wr|Jy (x)Jy (0)|mm)
Use experimental input (R, T decay) :

find hadronic contribution much larger than other analyses;

Resolves puzzle of the “missing” photons?
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Shear viscosity: strongly suppressed



Shear viscosity in the semi-QGP

Shear viscosity, 11, in the complete QGP:
Arnold, Moore & Yaffe, hep-ph/0010177 & 0302165 = AMY.

Generalize to Q # 0: Boltzmann equation in background field.
82
n=—

C

“Strong” QGP, large coupling S ~ 1, C ~ (coupling)? >> 1.
N=4SUN), g2N =N =: 1)/s = 1/4n . Kovtun, Son & Starinets hep-th/0405231

S = source, C = collision term. Two ways of getting small n:

Semi-QGP: small loop at moderate coupling: Pisarski & Hidaka, 0803.0453, 0912.0940
Pure glue: § ~ <loop>2, C ~ g4 <loop>2

M~ 2
With quarks: § ~ <loop>, C ~ g* Both: m ~ <loop>

To leading log order: # from AMY, constant “c” beyond leading log

- # R ; R —0) ~ (2

T3 g*log(c/g)




Counting powers of <loop>=1[— 0

S ———
S ~ f? * C ~ /2
&




Small shear viscosity from color evaporation

R = ratio of shear viscosity in semi-QGP/complete-QGP at same g, T.
Two different eigenvalue distributions give very similar results!

When <loop>
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R(6) 110f

0.8
0.6
0.4
0.2
0

~03,R~023.

<—Cusp near 1:
smoothed out

by Q~gT?




Shear viscosity/entropy

Leading log shear viscosity/lattice entropy. os(Tc) ~0.3.
Large increase from Tcto 2 Tc. Clearly need results beyond leading log.
Also need to include: quarks and gluons below T., hadrons above T.. Not easy.
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